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EXECUTIVE SUMMARY AND OVERVIEW 
 
The Gateway to Global Aging platform has provided a wealth of data across several countries that is 
harmonized such that cross-national comparisons can be made. This project aims to add global 
harmonized environmental exposome data to those Health and Retirement Study’s International Network 
of Studies (HRS-INS) included in the Gateway. These data are intended to become accessible to 
researchers around the world to inform important scientific questions within and between countries. 
 
This document provides user guidance and documentation for: 
 
The environmental data included for harmonization. This includes the scientific motivation for its 
inclusion in the project as well as a summary of how the data was collected, processed, and links to the 
original source information. We also include meta data describing the coordinate reference system, 
variable names, and important notes for use. Finally, we include an example methods section and 
associated references for each parameter. 
  
Assignment of environmental exposures to survey respondents. We provide guidance for exposure 
assessment to harmonize spatial and temporal averaging times for each environmental parameter across 
surveys. Code is also provided to assist in the assessment of exposures for each respondent using the 
cleaned data files provided by the Environmental Exposome Core at the University of Michigan School of 
Public Health.  
 
Environmental exposome datasets that are ready for linkage with the surveys are located on a Google 
Drive hosted by the University of Michigan School of Public Health. Please contact 
gatewayexposome@umich.edu for access.  

 
 
  

https://drive.google.com/drive/u/0/folders/1e0vv3_cEEC-Hf_T2y_LWOooGBT-S4Coo
https://drive.google.com/drive/u/0/folders/1e0vv3_cEEC-Hf_T2y_LWOooGBT-S4Coo


1.0 ENVIRONMENTAL EXPOSOME MEASURES  

1.1 Overview of Environmental Measures 
Measures of the environmental exposome currently available for HRS-INS surveys in the Gateway to 
Global Aging are outlined in Table 1 and described in detail in the following sections. Briefly, we have 
available the following data: 

 

Outdoor air pollution 

• Total fine particulate matter less than 2.5 microns in diameter (PM2.5)  

• PM2.5 from specific emission sources such as energy generation from coal, traffic, indoor 
biomass burning, and agriculture 

• Nitrogen dioxide (NO2) 

• Ozone (O3) 

Natural spaces 

• Greenspace 

• Bluespace 

Physical stressors 

• Nighttime light  

 

Table 1. Summary of Spatial and Temporal Resolutions of Environmental Exposome Data 

Exposure Temporal Resolution Approximate Spatial 
Resolution 

Years 

Total PM2.5 Mass annual average 0.0083⁰ (1km2) 2010-2019 

Total PM2.5 Mass monthly 0.1⁰ (~1km2) 1998-2022 

PM2.5 Source Fraction annual average 0.5⁰ x 0.625⁰ (~55km 
x ~70km) in North 
America, Europe, and 
East Asia; 2⁰ x 2.5⁰ 
(~225km x ~275km) 
elsewhere 

2017 

NO2 annual average 0.0083⁰ (~1km2) 1990, 1995, 
2000, 2005-
2020 

O3 annual average 0.1⁰ (~11km2) 1990-2017 

Greenspace annual maximum 
annual minimum 
annual mean 

250 meters (0.06 km2) 2001-2021 

Bluespace static 150 meters (0.02 km2) 2000-12 

Nighttime Light annual median 0.0042⁰ (~500m2) 2012-2021 
 



1.2 Total PM2.5 Concentrations in Outdoor Air 
Description: Particulate matter of aerodynamic diameter less than 2.5 microns (PM2.5) are extremely small 
particles that can be found in air. They are generated from a wide variety of sources ranging from natural 
emissions of windblown dust to anthropogenic emissions from fossil fuel combustion, traffic, industry, and 
fires. PM2.5 is of interest for human health as their inhalation can initiate inflammation, oxidative stress, 
vascular changes, and autonomic imbalance that can ultimately impact health.   
 
Spatiotemporal estimates of PM2.5 concentrations (µg/m3) have been generated for all locations at a 
monthly resolution on the globe between 1998 and 2022. These data, which are available at a 0.01o x 
0.01o resolution, were generated using a fusion of satellite data (MODIS, VIIRS, MISR, and SeaWiFS), 
chemical transport model (GEOS-Chem), ground-based sun photometer observation (AERONET), 
ground-based monitoring data, and local characteristics of place. These models produced by van 
Donkelaar and colleagues combine these different data sources using a Geographically Weighted 
Regression (GWR). 
 
These monthly estimates supplement the spatiotemporal annual mean concentrations of total PM2.5 that 
are available at a 1km2 resolution from 2010-2019. These data were created using the Data Integration 
Model for Air Quality (DIMAQ) originally for the World Health Organization’s Global Burden of Disease 
project and later refined for the Gateway to Global Aging project. These estimates were developed using 
a Bayesian hierarchical prediction model that leveraged satellite measurements of aerosol optical depth 
in the atmosphere, ground-level measures of pollution, chemical transport models, and correlations over 
space.  
 
Citations:  
van Donkelaar A, Hammer MS, Bindle L, Brauer M, Brook JR, Garay MJ, Hsu NC, Kalashnikova OV, 
Kahn RA, Lee C,  Levy RC,  Lyapustin A, Sayer AM, Martin RV. Monthly Global Estimates of Fine 
Particulate Matter and Their Uncertainty. Environmental Science & Technology, 2021, 55, 22, 15287-
15300. doi:10.1021/acs.est.1c05309.  
 
Shaddick G, Thomas ML, Green A, Brauer M, von Donkelaar A, Burnett R, Chang HH, Cohen A, Van 
Dingenen R, Dora C, Gumy S, Liu Y,  Martin R, Waller LA, West J, Zidek JV, Pruss-Ustun A. Data 
integration model for air quality: a hierarchical approach to the global estimation of exposures to ambient 
air pollution. Applied Statistics, 2018, 67(1), 231-253. https://doi.org/10.1111/rssc.12227 
 
Original Source (monthly 1998-2022): https://sites.wustl.edu/acag/datasets/surface-pm2-5/#V5.GL.04 
File names: Country_PM2.5_year_month 
 
Original Source (annual, 2010-2019): Not publicly available 
File names: PM2.5_DIMAQ_year 
 
Coordinate Reference System: WGS84 
Data type: Raster 
 
Data type: Numeric 
Units: μg/m3 
 
User Notes: The primary exposure estimates for PM2.5 for the Gateway projects are concentrations at 
participant addresses derived from the monthly data and averaged over the 10 years before each survey 
visit (incorporating residential history as possible). Secondary exposure estimates of interest are the 1 
and 5-year averages, averages over decades of life at the residential addresses, and estimates derived 
from the annual data.  
 
Example Methods Section 
“We estimated 10-year average outdoor fine particulate matter (PM2.5) concentrations for each participant 
based on their residential histories preceding each of their survey visits using the V5.GL.04 version of a 
global spatiotemporal model developed by van Donkelaar and colleagues. (van Donkelaar et al. 2020) 

https://academic.oup.com/jrsssc/article/67/1/231/7058389


Briefly, this model integrates data from ground-level measurement stations, satellites, chemical transport 
and meteorological models, and area-level characteristics to estimate outdoor concentrations of PM2.5 at a 
0.01o x 0.01o resolution. This geographically weighted regression has excellent agreement with ground-
level monitors (cross-validated R2=0.90) and allows for estimation of concentrations at participant 
addresses even where ground-level monitoring is sparse or even non-existent.”  
 

1.3 Source-Specific PM2.5 Concentrations in Outdoor Air 
Description: Particulate matter of aerodynamic diameter less than 2.5 microns (PM2.5) are generated by a 
variety of sources ranging from natural emissions of windblown dust to anthropogenic emissions from 
fossil fuel combustion, traffic, industry, and fires. The originating source has importance both for 
interventions but also for health since the emission source can alter the physical and chemical properties 
of the particles.  
 
Spatial estimates of the fraction of PM2.5 concentrations attributable to different sources have been 
predicted for all locations on the globe at a resolution of 2o x 2.5o with finer resolutions of 0.5o x 0.625o 
over North America, Europe, and Asia. These models were derived by serially running the GEOS Chem 
atmospheric chemical-transport model with all emission sources but one to isolate the unique contribution 
of that source to the total mixture of PM2.5. Emissions data was derived from 2017 but assumed to be 
representative of other years.  
 
Citation: McDuffie EE, Martin RV, Spadaro JV, Burnett R, Smith, SJ, O'Rourke P, Hammer M, van 
Donkelaar A, Bindle L, Shah V, Jaegle L, Luo G, Yu F, Adeniran J, Lin J, Brauer M. Source Sector and 
Fuel Contributions to Ambient PM2.5 Attributable Mortality Across Multiple Spatial Scales, Nature 
Communications, 2021, 12:3594. doi: 10.1038/s41467-021-23853-y 

Original Source: https://zenodo.org/record/4739100#.Y1AXlXbMLcs 
Coordinate Reference System: WGS84 
Data type: Raster 
 
File names: GBD_raster_country_source or fuel category (see lists below) 
Data type: Numeric 
Units: Fractional percentages (e.g., 0.0245 is 2.45%) 
 
List of Sources with Descriptions of Primary Emissions: 
AFCID   Anthropogenic fugitive, combustion, and industrial dust 
AGR   Agriculture - manure management, soil fertilizer emissions, rice cultivation, enteric 

fermentation, and other agricultural activities 
ENEcoal  Energy Production (coal combustion only) - electricity and heat production, fuel 

production and transformation, oil and gas fugitive/flaring, and fossil fuel fires 
ENEother Energy Production (all non-coal combustion) - electricity and heat production, fuel 

production and transformation, oil and gas fugitive/flaring, and fossil fuel fires 
GFEDagburn  Agricultural Waste Burning - solid waste disposal, waste incineration, waste-water 

handling, and other waste handling (from the GFED fires inventory) 
GFEDoburn  Other Open Fires - deforestation, boreal forest, peat, savannah, and temperate forest 

fires (from the GFED fires inventory)  
INDcoal Industry (coal combustion only) – industrial combustion (iron and steel, non-ferrous 

metals, chemicals, pulp and paper, food and tobacco, non-metallic minerals, 
construction, transportation equipment, machinery, mining and quarrying, wood products, 
textile and leather, and other industry combustion) and non-combustion industrial 
processes and product use (cement production, lime production, other minerals, chemical 
industry, metal production, food, beverage, wood, pulp, and paper, and other non-
combustion industrial emissions) 

INDother  Industry (all non-coal combustion) – industrial combustion (iron and steel, non-ferrous 
metals, chemicals, pulp and paper, food and tobacco, non-metallic minerals, 
construction, transportation equipment, machinery, mining and quarrying, wood products, 
textile and leather, and other industry combustion) and non-combustion industrial 

https://doi.org/10.1038%2Fs41467-021-23853-y
https://zenodo.org/record/4739100#.Y1AXlXbMLcs


processes and product use (cement production, lime production, other minerals, chemical 
industry, metal production, food, beverage, wood, pulp, and paper, and other non-
combustion industrial emissions) 

NRTR  Non-Road/Off-Road Transportation – rail, domestic navigation, other transportation 
Other  All Remaining Sources - Includes volcanic SO2, lightning NOx, biogenic soil NO, ocean 

emissions, biogenic emissions, very short-lived iodine and bromine species, decaying 
plants (misc. inventories) 

RCOC Commercial Combustion – commercial and institutional combustion 
RCOO Other Combustion – combustion from agriculture, forestry, and fishing 
RCORbiofuel Residential combustion (solid biofuel combustion only) – residential heating and cooking 
RCORcoal Residential combustion (coal combustion only) – residential heating and cooking 
RCORother Residential Combustion (all non-coal and non-solid biofuel) –residential heating and 

cooking 
ROAD Road Transportation – cars, motorcycles, heavy and light duty trucks and buses 
SHP International Shipping – international shipping and tanker loading 
SLV Solvents - solvents production and application (degreasing and cleaning, paint 

application, chemical products manufacturing and processing, and other product use) 
WDUST Windblown Dust  
WST Waste – solid waste disposal, waste incineration, waste-water handling, and other waste 

handling 
 
List of Fuel Categories with Primary Emissions (Note: These will not sum to 100% for each grid cell since 

they only include combustion sources of PM2.5) 
BIOFUEL Solid Biofuel (or Biomass) Combustion- Solid biofuel 
COAL  Total Coal Combustion – Hard coal, brown coal, coal coke 
OILGAS Liquid Oil and Natural Gas Combustion –light and heavy oil, diesel oil, and natural gas 
 
User Notes: To calculate absolute contributions of PM2.5 attributable to each source, location-specific total 
PM2.5 (see above) must be multiplied by their location-specific fractional source contributions. These 
estimates of PM2.5 attributable to each source averaged over the 10 years before each survey visit 
(incorporating residential history as possible) are the primary harmonized exposure estimates for the 
Gateway projects. Secondary exposure estimates of interest are 1 and 5-year averages and averages 
over decades of life at the residential addresses. 
 
Example Methods Section: 
“We estimated 10-year average outdoor fine particulate matter (PM2.5) concentrations for each participant 
based on their residential histories preceding each of their survey visits using the V5.GL.04 version of a 
global spatiotemporal model developed by van Donkelaar and colleagues. (van Donkelaar et al. 2020) 
Briefly, this model integrates data from ground-level measurement stations, satellites, chemical transport 
and meteorological models, and area-level characteristics to estimate outdoor concentrations of PM2.5 at a 
0.01o x 0.01o resolution. This geographically weighted regression has excellent agreement with ground-
level monitors (cross-validated R2=0.90) and allows for estimation of concentrations at participant 
addresses even where ground-level monitoring is sparse or even non-existent. 
 
We further derived source-specific PM2.5 concentrations by multiplying the total PM2.5 at each address by 
the paired fraction of PM2.5 attributable to X different emission sources. These fractions were derived by 
Mc Duffie and colleagues (McDuffie et al 2021) at a resolution of X (0.5o x 0.625o over North America, 
Europe, and Asia or 2o x 2.5o elsewhere) based on the serial exclusion of each source from the GEOS-
Chem chemical transport model.”  

 

1.4 Nitrogen Dioxide NO2 Concentrations in Outdoor Air 
Nitrogen dioxide (NO2) is a gas that can react to form PM2.5 and ozone. It is commonly generated by the 
combustion of fuel, most notably in the transportation sector but also from power plants and industrial 
manufacturing. In urban areas, NO2 is commonly used as an indicator of a mixture of pollutants generated 
by the transportation sector and traffic. It has been associated with adverse health effects in epidemiology 
studies.  



 
Spatial estimates of NO2 concentrations have been predicted for all locations on the globe at a resolution 
of 0.083o every 5-years from 1990 to 2010 and then annually from 2010 to 2019 by Mohegh and 
Anenberg (Anenberg et al. 2022). These estimates were generated by extending an existing spatial 
prediction model (i.e., a land use regression model by Larkin and colleagues) to later years and refining 
this model for better performance in rural areas. The original spatial prediction model was derived from 
over 5000 monitors in nearly 60 countries (primarily in Europe, North America, and Asia) along with land 
use information and satellite data. Refinements to this model included further calibration using the 
Modern-Era Retrospective analysis for Research and Applications reanalysis product and additional 
satellite-based data. 
 
Citation: Anenberg SC, Mohegh A, Goldberg DL, Kerr GH, Brauer M, Burkhart K, Hystad P, Larkin A, 
Wozniak S, Lamsal L. Long-term trends in urban NO2 concentrations associated paediatric asthma 
incidence: estimates from global datasets. The Lancet Plantetary Health, 2022, 6(1): E49-E58. 
https://doi.org/10.1016/S2542-5196(21)00255-2  
 
Related Citation: Larkin A, Geddes JA, Martin RV, Xiao Q, Liu Y, Marshall JD, Brauer M, Hystad P. 
Global land use regression model for nitrogen dioxide air pollution. Environmental Science & Technology, 
2017, 51(12):6957-6964. doi: 10.1021/acs.est.7b01148.  
 
Original Source: https://figshare.com/articles/dataset/Global_surface_NO2_concentration_1990-
2020/12968114 
Coordinate Reference System: WGS84 
Data type: Raster 
 
File names: NO2_GBD_year 
Data type: Numeric 
Units: ppb 
 
User Notes: The primary exposure estimates for NO2 for the Gateway projects are concentrations at 
participant addresses, averaged over the 10 years before each survey visit (incorporating residential 
history as possible). Secondary exposure estimates of interest are 1 and 5-year averages and averages 
over decades of life at the residential addresses. Areas of water are assigned a value of 0. For earlier 
years (1990-2000), the country boundaries are coarser, and some coastal areas may be missing. 
 
Example of Methods Section: 
“We estimated 10-year average outdoor  nitrogen dioxide (NO2) concentrations for each participant based 
on their residential histories preceding each of their survey visits using model predictions available at a 
resolution of approximately 1km2. These estimates were available every 5-years from 1990 to 2010 and 
then annually from 2010 to 2019 (Anenberg et al. 2022). NO2 was predicted by extending an existing 
spatial prediction model (Larkin et al 2017) derived from over 5000 monitors in nearly 60 countries 
(primarily in Europe, North America, and Asia) to additional years. Additional refinements to this model 
were made for rural settings including further calibration using the Modern-Era Retrospective analysis for 
Research and Applications reanalysis product and additional satellite-based data. 
 

1.5 Ground-Level Ozone (O3) Concentrations in Outdoor Air 
Ozone (O3) is a gas that is formed when emissions from sources including cars and industry react 
together in the presence of sunlight and heat. Ozone is a highly reactive gas that can be harmful to 
human health.  
 
Spatiotemporal estimates of ambient ozone were generated at a 0.10 x 0.10 resolution between 1990 and 
2017 across the world by Becker and colleagues (2023). Here, ozone is defined as the highest six-month 
running average of eight-hour daily maximum ozone mixing ratios (i.e., fractional concentration in parts 
per billion [ppb]). Concentrations were estimated using Bayesian Maximum Entropy (BME) fusion model 
to combine 9 atmospheric chemistry models. The modeling also incorporates a Regionalized Air Quality 

https://www.thelancet.com/pdfs/journals/lanplh/PIIS2542-5196(21)00255-2.pdf
https://pubs.acs.org/doi/10.1021/acs.est.7b01148
https://figshare.com/articles/dataset/Global_surface_NO2_concentration_1990-2020/12968114
https://figshare.com/articles/dataset/Global_surface_NO2_concentration_1990-2020/12968114


Model Performance (RAMP) framework to flexibly correct for bias that occurs due to different model 
performance around the globe.    
 
Citation: Becker JS, DeLang MN, Chang KL, Serre ML, Cooper OR, Wang H, Schultz MG, Schroder S, Lu 
Xiao, Zhang L, Deushi M, Josse B, Keller CA, Lamarque JF, Lin M, Liu J, Marecal V, Strode SA, Sudo K, 
Tilmes S, Zhang Li, Brauer M, West JJ. Using regionalized air quality model performance and Bayesian 
Maximum Entropy data fusion to map global surface ozone concentrations. Elementa: Science of the 
Anthropocene. 2023. 11(1):0025. https://doi.org/10.1525/elementa.2022.00025 
 
Related Citation: Malashock DA, DeLang MN, Becker JS, Serre ML, West JJ, Chang KL, Cooper OR, 
Anenberg SC. Estimates of ozone concentrations and attributable mortality in urban, peri-urban and rural 
areas worldwide in 2019. Environ. Res. Lett. 2022. 17:054023 doi: 10.1088/1748-9326/ac66f3 

Original Source: Provided by Jason West at University of North Carolina 
Coordinate Reference System: WGS84 
Data type: Raster 
 
File names: Country_O3_year 
Data type: Numeric 
Units: ppb 
 
User Notes: The primary exposure estimates for O3 for the Gateway projects are concentrations at 
participant addresses, averaged over the 10 years before each survey visit (incorporating residential 
history as possible). Secondary exposure estimates of interest are 1 and 5-year averages and averages 
over decades of life at the residential addresses.  
 
Example of Methods Section 
“Long-term averages of ozone concentrations were calculated at participant addresses over the previous 
X years before their survey. Ozone levels are reported in parts per billion (ppb) using a global model of 
ozone (Becker et al. 2023) that estimated levels at a 0.10 x 0.10 resolution between 1990-2017. Briefly, 
Becker et al combined a rich set of ground level ozone monitoring data with multiple global atmospheric 
models using a Bayesian Maximum Entropy model with a Regionalized Air Quality Model Performance 
(RAMP) bias correction for differential model performance around the globe. These estimates are 
refinements of models originally developed for use in the Institute for Health Metrics and Evaluation 
Global Burden of Disease project and subsequently used in worldwide estimates of attributable mortality 
(Malashock et al. 2022).” 
 

1.6 Greenspace 
Greenspace is a measure  intended to reflect exposure to nature and natural settings. It is hypothesized 
that greenspace can have important impacts on health through pathways including increased exercise, 
social engagement, and reduced stress. It can also provide protection from environmental contaminants 
and shade from sunlight and heat.  
 
The Normalized Difference Vegetation Index (NDVI) has been provided as a marker of greenspace. NDVI 
is measured by the Moderate Resolution Imaging Spectroradiometer aboard NASA's Terra satellite 
(MODIS-Terra) satellite and was pre-processed by the Google Earth Engine. The MOD13Q1 version 6 
data span from 2000 to 2021 and are available at a 250m, 16-day resolution. We have calculated the 
maximum, minimum, and mean NDVI for each survey year. 
 
NDVI ranges from -1 to 1, with densely vegetated areas like forests approaching 1 and water, ice, 
pavement, and bare soil exhibiting low positive or negative values. Generally: 

-1 to 0: Inanimate Objects or Dead Plants 
0 to 0.33: Unhealthy plant 
0.33 to 0.66: Moderately healthy plant 
0..66 to 1: Healthy plant 

(source: https://eos.com/blog/ndvi-faq-all-you-need-to-know-about-ndvi/) 

https://doi.org/10.1525/elementa.2022.00025
https://iopscience.iop.org/article/10.1088/1748-9326/ac66f3


 
Citation: Didan K, Munoz AB, Solano R, Huete A. MODIS Vegetation Index User’s Guide (MOD13 
Series). 2015. Doi: 10.5067/MODIS/MOD13Q1.006  
 
Original Source: https://lpdaac.usgs.gov/products/mod13q1v006/ (version 6, Accessed 2022-12-07) 
We downloaded, multiplied by the Scale Factor and processed using Google Earth Engine. A sample 
script is available in the Appendix. 
Coordinate Reference System: WGS84  
Data File Type: Raster 
 
File names: NDVI_MAX/MIN/MEAN_MODIS_year 
Data type: Numeric 
Units: unitless 
 
User Notes: The primary exposure estimate for greenspace for the Gateway projects is the maximum 
NDVI averaged over a 1km buffer around each participant address. This is intended to capture vegetation 
in a person’s neighborhood regardless of the amount of greenness currently present based on the 
season. Secondary exposure estimates of interest are at 0, 250, and 5000 meters as well as minimum 
and mean NDVI values. The primary exposure duration is averaged over the 10 years before each survey 
visit (incorporating residential history as possible) with 1 and 5-year averages and averages over decades 
of life at the residential addresses being secondary.  
 
Example Methods Section 
“We estimated exposure to greenspace using Normalized Difference Vegetation Index (NDVI) using data 
available through the Google Earth Engine and derived from 250 meter resolution images captured by the 
Moderate Resolution Imaging Spectroradiometer aboard NASA's Terra satellite (MODIS-Terra). 
Specifically, we accessed version 6 of the MOD13Q1 data. NDVI serves as an indicator of vegetation 
within an area with values ranging from -1 to 1, with densely vegetated surfaces like forests approaching 
1 and water, pavement, and bare soil exhibiting negative values.  
 
For our analyses, we estimated the maximum annual NDVI in a 1km buffer around participant locations 
and generated a 10-year average exposure based on their residential histories. We selected the 
maximum NDVI for the year to capture the presence of vegetation, irrespective of its greenness at a 
specific time or the duration of its greenness throughout the year.”  
 

1.7 Bluespace 
Bluespace is a measure that reflects exposure to water (i.e., lakes, rivers, oceans) in natural settings. It is 
hypothesized that bluespace can have important impacts on health through pathways including increased 
exercise, social engagement, and reduced stress. It may also provide some cooling properties from 
extreme heat but may exacerbate flooding during extreme weather events.  
 
Bluespace was estimated using a static map of open water bodies from the Land Cover CCI Climate 
Research Data Package (Water Bodies 4.0). This map is available at the 150m resolution and has been 
coded as a binary variable with 0 for land and 1 for water by leveraging multiple datasets from 2000 
through 2012. The overall accuracy of the model was estimated between 98 and 100% with slightly lower 
accuracy (74-89%) when focusing on complex water body mapping such as coastlines and river banks.  
 
Citation: Lamarche C, Santoro M, Bontemps S, D’Andrimont R, Radoux J, Giustarini L, Brockmann C, 
Wevers J, Defourny P, Arino O. Compilation and Validation of SAR and Optical Data Products for a 
Complete and Global Map of Inland/Ocean Water Tailored to the Climate Modeling Community. Remote 
Sensing. 2017; 9(1):36. https://www.mdpi.com/2072-4292/9/1/36 
 
Original Source (website/link when applicable):  http://maps.elie.ucl.ac.be/CCI/viewer/download.php 
Coordinate Reference System: WGS84 
Data File Type: Raster 
 

https://lpdaac.usgs.gov/documents/103/MOD13_User_Guide_V6.pdf
https://lpdaac.usgs.gov/products/mod13q1v006/
https://www.mdpi.com/2072-4292/9/1/36
http://maps.elie.ucl.ac.be/CCI/viewer/download.php


File Names: nir_blue  
Data type: Binary (0=land, 1=water)  
Units: unitless  
 
User Notes: The primary exposure estimate for bluespace for the Gateway projects is percent of 
bluespace within a 1km buffer around each participant address. Secondary exposure estimates of interest 
are at 250m and 5 km. The primary exposure duration is averaged over the 10 years before each survey 
visit (incorporating residential history as possible) with 1 and 5-year averages and averages over decades 
of life at the residential addresses being secondary.  
 
Example Methods Section 
“We estimated exposure to bluespace using data from the Land Cover CCI Climate Research Data 
Package (Water Bodies 4.0) (Lamarche et al 2017). These data were compiled using 9 different data 
sources for water between 2000 and 2012 to improve the spatial accuracy of the water boundaries.  For 
our analyses, we estimated the percent bluespace in a 1km buffer around participant locations and 
generated a 10-year average exposure based on their residential histories assuming that there is 
temporal stability in the water boundaries. In secondary analyses we looked at other distances from 
participants’ homes including 250m and 5km.”  
 

1.8 Light at Night (LAN) 
Nighttime light reflects human activities in neighborhoods. This parameter is of scientific interest as it may 
disrupt circadian rhythms and interfere with sleep. It is also used by some economists as a measure of 
wealth in low- and middle-income countries. 
 
Annual global nighttime light has been produced from monthly cloud-free average radiance grids from the 
NASA/NOAA Visible Infrared Imaging Radiometer Suite (VIIRS) between 2012 and 2021. Elvidge and 
colleagues conducted pre-processing of the information to remove outlier features such as biomass 
burning and the aurora as well as moonlight. We utilized median masked global raster data.  
 
Citation: Elvidge CD, Zhizhin M, Ghosh T, Hsu FC, Taneja J. Annual time series of global VIIRS nighttime 
lights derived from monthly averages:2012 to 2019. Remote Sensing, 2021, 13(5): 922, 
doi:10.3390/rs13050922 
 
Original Source: https://eogdata.mines.edu/nighttime_light/annual/v21/ 
Coordinate Reference System: WGS84 
Data type: Raster 
 
File Names: Nightlight_VIIRS_year  
Data type: numeric  
Units: nanoWatts per square centimeter per steradian (nW/cm2/sr) 
 
User Notes: The primary exposure estimate for light at night for the Gateway projects is the 10-year 
average estimated at the participant address before each survey visit (incorporating residential history as 
possible). Secondary analyses include the 1 and 5-year averages and averages over decades of life. LAN 
is extremely skewed. Log-transforming may aid in visualizing the data (maps, boxplots). Additional 
documentation: https://eogdata.mines.edu/products/vnl/ 
 
Example Methods Section 
“Light at Night (LAN) exposures were obtained from the Joint Polar-orbiting Satellite System (JPSS) and 
the Visible and Infrared Imaging Suite (VIIRS) Day Night Band (DNB) technology and assigned to each 
participant address in the 10-years prior to each survey. These data were processed by the Earth 
Observation Group to remove pixels that were sunlit, moonlit or cloudy (Elvidge et al., 2012). We used 
annual median-masked rasters, version VNL2.1 which has an improved method of removing outliers. 
These data were at the 500m resolution from 2012-2021.” 
 

https://www.mdpi.com/2072-4292/13/5/922


1.9 Spatial Splines 
Environmental exposures are inherently spatial and thus there is a risk of these exposures being 
correlated with other features of place. While we attempt to adjust for these characteristics in our 
epidemiological analyses using personal and neighborhood features, there is the possibility of residual 
confounding by place. Therefore, we have developed code that can be used to estimate spatial splines to 
flexibly account for residual confounding. The code in the appendix will generate continuous place-based 
indicators to model place flexibly, allowing the user to specify the number of degrees of freedom desired.  

Citations: Keller JP and Szpiro AA. Selecting a Scale for Spatial Confounding Adjustment. Journal of the 
Royal Statistical Society: Series A Statistical Society. 2020. 183(3): 1121–1143. doi:10.1111/rssa.12556. 
 
Paciorek CJ. The importance of scale for spatial-confounding bias and precision of spatial regression 
estimators. Statistical Science. 2010. 25(1):107–125. doi: 10.1214/10-STS326 
 
Original Source: NA, but R code is provided in the appendix 
Coordinate Reference System: NA 
 
Variable Names: spatialbasis1ofX 
Data type: numeric  
Units: unitless 
 
User Notes: The code outputs x variables corresponding to the degrees of freedom specified. All x 
variables are entered into the model. For example for 5 degrees of freedom,Y=spatialbasis1of5 
+spatialbasis2of5+ spatialbasis3of5 +spatialbasis4of5 +spatalbasis5of5. The degrees of freedom are not 
set. In HRS (United States of America), 10df was used.  
 
Example Methods Section 
“We adjusted for unmeasured confounding by location using spatial splines with X degrees of freedom. 
Spatial splines are a flexible approach to address spatial confounding by giving more degrees of freedom 
to areas more densely populated areas, as opposed to using categorical variables that do not account for 
population density- e.g. census divisions, state. These variables were created by applying thin plate 
regression splines to the coordinates of participant locations. Then using x degrees of freedom, x 
continuous variables are used to describe the participant’s location.”  
 

2.0 USING ENVIRONMENTAL EXPOSOME DATA  

2.1 Temporal Averaging 
Recommended: 1-year, 5-year, 10-year 
 

2.2. Spatial Buffers 
Recommended: at location, 250m, 1km, 5km 
Assuming that there are geocoordinates available for participant locations (e.g. latitude, longitude) 
resolution.  
 

2.3 Spatial Adjustment 
Environmental exposures and other unmeasured factors can be correlated with space. Therefore there is 
a need to ensure adjustment for space. If coordinates are available for participant locations, we 
recommend using spatial splines (code provided in the Appendix). 

 

3.0 APPENDIX  

3.1 Assigning Exposures to Participants (R Code) 
This is sample code in R- which is free – but often has updates so please be advised that review and 
modifications may be required during implementation.  

https://pubmed.ncbi.nlm.nih.gov/33132544/
https://pubmed.ncbi.nlm.nih.gov/21528104/


This links data to locations and buffers. 

#Code Created for Gateway User Guide 
#Note that this one transitions to the sf and stars R packages 
#instead of using the rgdal packages 
#VERY helpful sites for stars:  
#https://r-spatial.github.io/stars/articles/stars1.html 
#https://tmieno2.github.io/R-as-GIS-for-Economists/index.html 
#Example using Ireland 
 
#install.packages('stars') 
#install.packages('terra') 
#install.packages("exactextractr")  
 #this is a MUCH faster way of calculating means over buffers 
library(stars) 
library(terra) 
library(raster) 
library(exactextractr) 
 
 
#Load (x,y) coordinates for points 
irl_sample<-read.csv('S:\\Adar\\Gateway\\Data\\User Guide\\Test\\irl_sample.csv') 
class(irl_sample) 
names(irl_sample) 
 #set population data frame and convert to spatial object 
pop_sample_sp<-st_as_sf(irl_sample, coords = c("x", "y"), crs = "WGS84") 
 #plot points 
plot(st_geometry(pop_sample_sp),cex=0.1) 
 
########### 
#Load Rasters 
########### 
setwd('S:\\Adar\\Gateway\\Data\\By Country\\Ireland\\') 
 
list_files<-list.files() 
 #### 
 #PM2.5 
 #### 
 #subset to pm25 
 list_pm25_dimaq<-subset(list_files, substr(list_files,1,10)=='PM25_DIMAQ') 
 pm25_brick<-raster::brick(lapply(list_pm25_dimaq,raster)) 
 
 #### 
 #NO2 
 #### 
 #subset to NO2 
 list_no2_gbd<-subset(list_files, substr(list_files,1,7)=='NO2_GBD') 
 no2_brick<-raster::brick(lapply(list_no2_gbd,raster)) 
 
 #### 
 #Source Fraction 
 #### 
 #subset to Source fraction 
 list_gbd_src<-subset(list_files, substr(list_files,1,10)=='GBD_raster') 
 src_brick<-raster::brick(lapply(list_gbd_src,raster)) 
 
 #### 
 #Source Fraction 
 #### 
 #subset to Source fraction 
 list_gbd_src<-subset(list_files, substr(list_files,1,10)=='GBD_raster') 
 src_brick<-raster::brick(lapply(list_gbd_src,raster)) 



 
############# 
#Get Values at Different Buffers 
########### 
############# 
#Make Buffers around points 
########### 
 #250m buffer 
buffer250m <- st_buffer(pop_sample_sp, dist = 250) 
 #1km buffer 
buffer1km <- st_buffer(pop_sample_sp, dist = 1000) 
 #5km buffer 
buffer5km <- st_buffer(pop_sample_sp, dist = 5000) 
 
########### 
#Buffer Size=0 (Extract to Point) 
########### 
 
pm25_all<-terra::extract(pm25_brick, pop_sample_sp) 
summary(pm25_all) 
 
no2_all<-terra::extract(no2_brick, pop_sample_sp) 
summary(no2_all) 
 
src_all<-terra::extract(src_brick, pop_sample_sp) 
summary(src_all) 
 
 
########### 
#Buffer Size=250m  
########### 
 #plot to check 
plot(st_geometry(buffer250m[buffer250m$X %in% c(1:10),]), border = "red", lwd = 2, col = NA) 
plot(st_geometry(pop_sample_sp[pop_sample_sp$X %in% c(1:10),]), 
  add = TRUE, 
  cex = 1, 
) 
pm25_250m<-exact_extract(pm25_brick,  
                                buffer250m,  
                               fun='mean') 
 #better looking names 
oldnames<-names(pm25_250m) 
names(pm25_250m)<-lapply(oldnames,function(x){ 
  paste0("PM25_DIMAQ_",  substr(x, nchar(x)-4+1, nchar(x)), "_Mean_250m") 
 }) 
 
no2_250m<-exact_extract(no2_brick,  
                                buffer250m,  
                               fun='mean') 
 #better looking names 
oldnames<-names(no2_250m) 
names(no2_250m)<-lapply(oldnames,function(x){ 
  paste0("NO2_GBD_",  substr(x, nchar(x)-4+1, nchar(x)), "_Mean_250m") 
 }) 
 
pm25_no2_250m<-cbind(pm25_250m, no2_250m, pop_sample_sp) 
head(pm25_no2_250m) 
summary(pm25_no2_250m) 
 
########### 
#Buffer Size= 5km  
########### 



 #plot to check 
plot(st_geometry(buffer5km[buffer5km$X %in% c(1:10),]), border = "red", lwd = 2, col = NA) 
plot(st_geometry(pop_sample_sp[pop_sample_sp$X %in% c(1:10),]), 
  add = TRUE, 
  cex = 1, 
) 
 
#Blue Space within Buffer Distance 
irl_blue<-raster("S:\\Adar\\Gateway\\Data\\By Country\\Ireland\\irl_blue.tif") 
 #get max value in 5km buffer 
irl_blue_5km<-exact_extract(irl_blue,  
                                buffer5km,  
                               fun='mean') 
summary(irl_blue_5km) 
irl_blue_5km<-cbind(pop_sample_sp, irl_blue_5km) 
 

3.2 Calculating Exposure Averages (1-year, 5-year, 10-year, decadal) 
################## 
#Calculating Exposure Averages Using intervalaverage 
################## 

R package intervalaverage 

Structure of data, Long 

 

3.3 Generate Spatial Splines 
#Creating Thin plate spline functions for lat/long 
 
#desc 

#Create thinplate splines for points  
#[using unpenalized thin-plate regression splines (TPRS) in the MGCV package]  
#(Wood 2003). TPRS are a flexible way of adjusting for spatial confounding.  

#Using singular value decomposition, they decompose the distance matrix of all  
#participant locations into a set of basis functions, the first k of which are  
#included as adjustment covariates in the health models (Wood 2003). 

#end desc 
 
#Michael's code (transcribed) 

#library(mgcv) 
#library(splines) 
#n<-50 

#s1<-runif(n^2) 
#s2<-runif(n^2) 
#y<-s1+s2^3 +s1*s2 + s1*4*sqrt(s2)+sin(4*s1) 

#y<-100*(y-min(y))/diff(range(y)) 
#z<-gam(y~s(s1,s2,fx=TRUE,k=10)) 
#H<-predict.gam(z,type="lpmatrix") 

#library(data.table) 
#setwd() 
#x<-fread("unique_locs_all.txt") 

#x[,y:=1L] 
# 
#ndf<-c(10L,15L,20L) 

#H_list<-lapply(ndf,function(q){ 
# m<-gam(y~s(lambert_x,lambert_y, fx=TRUE, k=q+1L),data=x) 
# H_temp<-predict.gam(m,type="lpmatrix") 

# out<-as.data.table(H_temp[,-1]) 
# newnames<-paste0("spatialbasis",1:ncol(out),"of",q) 
# setnames(out,newnames) 

# out 
# }) 
# cbind(H_list) 

#v15<-gam(y~s(lambert_x,lambert_y,fx=TRUE,k=16),data=x) 
#H15<-predict.gam(v15,type="lpmatrix") 
# 

#v20<-gam(y~s(lambert_x,lambert_y,fx=TRUE,k=21),data=x) 
#H20<-predict.gam(v20,type="lpmatrix") 



 
#what I actually ran 

library(mgcv) 
library(splines) 
n<-50 

s1<-runif(n^2) 
s2<-runif(n^2) 
y<-s1+s2^3 +s1*s2 + s1*4*sqrt(s2)+sin(4*s1) 

y<-100*(y-min(y))/diff(range(y)) 
z<-gam(y~s(s1,s2,fx=TRUE,k=10)) 
H<-predict.gam(z,type="lpmatrix") 

 
 
library(data.table) 

jen_loc<-read.csv("C:\\Users\\changj\\starbucks_us_locations.csv") 
 
View(jen_loc) 

names(jen_loc) 
jen_loc<-jen_loc[c("long","lat")] 
jen_loc<-na.omit(jen_loc) 

dim(jen_loc) 
library(ggplot2) 
library(usmap) 

library(maptools) 
jen_trans<-usmap_transform(jen_loc) 
 

plot_usmap() + 
  geom_point(data = jen_trans, aes(x = long.1, y = lat.1), 
             color = "red", alpha = 0.25)  

 
setwd("C:\\Users\\changj\\") 
x<-fread("starbucks_us_locations.csv") 

x[,y:=1L] 
names(x) 
 

 
# test on 10 
ndf<-c(5L,7L,10L) 

H_list<-lapply(ndf,function(q){ 
 m<-gam(y~s(lat,long, fx=TRUE, k=q+1L),data=x) 
 H_temp<-predict.gam(m,type="lpmatrix") 

  #type="lpmatrix" then a matrix is returned which yields the values of the  
  #linear predictor (minus any offset) when postmultiplied by the parameter  
  #vector (in this case se.fit is ignored). The latter option is most useful  

  #for getting variance estimates for quantities derived from the model: for  
  #example integrated quantities, or derivatives of smooths. A linear predictor  
  #matrix can also be used to implement approximate prediction outside R  

  #(see example code, below) 
 out<-as.data.table(H_temp[,-1]) 
 newnames<-paste0("spatialbasis",1:ncol(out),"of",q) 

 setnames(out,newnames) 
 out 
 }) 
cbind(H_list) 

head(H_list) 
jen_sp<-cbind(H_list,jen_loc) 

 

3.4 Download NDVI from Google Earth Engine 
Google Earth Engine is freely available and only requires creating an account. 

//Example is 2000 AND INDIA 

//Code for Downloading MODIS NDVI for Gateway Countries 
 
//Loading MODIS data  
var modis = ee.ImageCollection('MODIS/006/MOD13Q1'); 
 
//Creating an array of feature collections  



    //extent of india 
    // class      : Extent  
    // xmin       : 68.2056  
    // xmax       : 97.39556  
    // ymin       : 6.755997  
    // ymax       : 35.67455  
     
    // var xMin =68.2056; 
    // var yMin = 6.755997 ; 
    // var xMax = 97.39556; 
    // var yMax = 35.67455 ; 
    //Region 1 
    // class      : Extent  
    var xmin1       = 68 ; 
    var xmax1       = 98 ; 
    var ymin1       = 6; 
    var ymax1       = 20; 
     
    //Region 2 
    // class      : Extent  
    var xmin2       = 68 ; 
    var xmax2       = 98 ; 
    var ymin2       = 19; 
    var ymax2       = 36; 
    // Construct a rectangle from a list of bounding coordinates. 
    var rectangleBounds1 = ee.Geometry.Rectangle( 
      [xmin1, ymin1, xmax1, ymax1] 
    ); 
    Map.addLayer(rectangleBounds1, {}, 'rectangleBounds1'); 
     
     
    var rectangleBounds2 = ee.Geometry.Rectangle( 
      [xmin2, ymin2, xmax2, ymax2] 
    ); 
    Map.addLayer(rectangleBounds2, {}, 'rectangleBounds1'); 
     
//One for each region 
var regions = [rectangleBounds1, rectangleBounds2 
]; 
  regions.forEach( 
  function(region){  
     var modis = ee.ImageCollection('MODIS/006/MOD13Q1') 
                  .filterDate('2000-01-01', '2021-12-31') 
                  .filterBounds(region) 
                  .select('NDVI'); 
      for (var year = 2001; year <= 2021; year=year+1) {  
      var startDate = year + '-01-01'; //Start Jan 1st 
      var endDate = year + '-12-31'; //Ends Dec 31st  
      var annual = modis.filter(ee.Filter.date(startDate,endDate)) //Filter by dates 
      .qualityMosaic('NDVI') //Take the MAX    
      // .clipToCollection(region) ;//Clip to regions  
      Export.image.toDrive({ 
        image: annual, 
        description: 'region'+(regions.indexOf(region)+1).toString()+'_'+year+'_MAX', 
        folder: 'Max NDVI (MODIS)- India', // should match your Google Drive folder 
        scale: 250, // resolution 
        region: region, 
        crs: 'EPSG:4326', // can be whatever you want 4269 might be better for NA  
        maxPixels: 1e10}); // may need to boost to meet size 
      } 
  } 
  ); 



   
     

3.5 Download Land Cover Classification Data from Google Earth Engine 
//Code to Download Land Cover Classifications Types 1 & 2  

//Type 1: Land Cover Type 1: Annual International Geosphere-Biosphere Programme (IGBP) classification 
//Type 2: Land Cover Type 2: Annual University of Maryland (UMD) classification 
 

//FOR EACH COUNTRY NEED TO CHANGE: INDIA 
// Line 12: cty_poly- make sure the polygon is right 
// Line 33: make sure the folder name is updated 

// Line 48: make sure the folder name is updated 
 
 

//Import Country Boundary 
var cty_poly = ee.FeatureCollection('users/changj/ind_poly'); 
print(cty_poly); 

 
//Display the shapefile into the interactive map 
Map.addLayer(cty_poly); 

 
//Filter Land Cover by Country Polygon (masks the other values) 
var collection = ee.ImageCollection('MODIS/006/MCD12Q1') 

  .filterDate('2001-01-01', '2020-01-01')   
  .filterBounds(cty_poly);  // Intersecting with country 
  print(collection); 

 
//Select the LC_Type1 Band: Land Cover Type 1: Annual International Geosphere-Biosphere Programme (IGBP) classification 
var lc_type1=collection.select('LC_Type1'); 

 
//Export 
/*call up batch function  

https://gis.stackexchange.com/questions/248216/exporting-each-image-from-collection-in-google-earth-engine 
*/ 
var batch = require('users/fitoprincipe/geetools:batch') 

 
batch.Download.ImageCollection.toDrive(lc_type1, 'India/LC_Type1',  
                {scale: 500,  

                 region: cty_poly,  
                 type: 'float'}) 
 
 

//Select the LC_Type2 Band: Land Cover Type 2: Annual University of Maryland (UMD) classification 
var lc_type2=collection.select('LC_Type2'); 
 

//Export 
/*call up batch function  
https://gis.stackexchange.com/questions/248216/exporting-each-image-from-collection-in-google-earth-engine 

*/ 
var batch = require('users/fitoprincipe/geetools:batch') 
 

batch.Download.ImageCollection.toDrive(lc_type2, 'India/LC_Type2',  
                {scale: 500,  
                 region: cty_poly,  

                 type: 'float'}) 

 


